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Abstract

The generation of predictive models is a frequent task in data mining with the objective of generating highly precise and
interpretable models. The data reduction is an interesting preprocessing approach that can allow us to obtain predictive
models with these characteristics in large size data sets. In this paper, we analyze the rule classification model based on
decision trees using a training selected set via evolutionary stratified instance selection. This method faces the scaling prob-
lem that appears in the evaluation of large size data sets, and the trade off interpretability-precision of the generated
models.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A basic process in data mining is the generation of representative models from data [1]. The models,
depending on their domain of application, can be descriptive or predictive. The classical objective of predictive
models is the accuracy or precision of the model. On the other hand, the interpretability of the model is an
important aspect for the expert point of view, to understand the model behaviour [2]. In classical literature,
we can find different proposals to measure the quality of the predictive models, as well as the precision, like
simplicity, interpretability, etc. [3].

In this paper we are going to focus our attention on the predictive models based on classification rules for
different size data sets, with the special interest in the trade off interpretability-precision [2]. Our models have
been extracted from the data sets by means of C4.5 algorithm [4].
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A possible way to improve the behaviour of predictive models, precision and interpretability, is to extract
them from suitable reduced/selected training sets [5]. Training set selection can be developed using instance
selection algorithms. The instance selection algorithms select representative instance subsets following a deter-
mined strategy, and they can improve the nearest neighbour rule prediction capabilities used in some cases as
selection strategy objective [6,7]. In [5], Sebban et al. study the effect of the learning set size in decision trees
performances. An important conclusion of this analysis is that the application of instance selection algorithms
(and concretely, the PSRCG algorithm) can improve the generalization accuracy, reduce the decision tree size
and tolerate the presence of noise, establishing a close link between instance selection and tree simplification.

Evolutionary algorithms (EAs) are adaptable methods based on natural evolution that can be applied to
search and optimization problems [8-10]. The EAs offer interesting results when they are assessed on instance
selection [11,12]. In this study, we use CHC algorithm as EA [13], considering its behaviour shown in [14]. The
basic idea consists of combining in the fitness function both objectives, interpretability and precision [14,15].

The evaluation of instance selection algorithms over large size data sets makes them ineffective and ineffi-
cient. The effect produced by the size of data set in the algorithms is called scaling problem.

We focus our attention on evolutionary instance selection for large size data sets with the aim of extracting
high precise-interpretable rules. To tackle the scaling problem we combine the stratification of the data sets with
the instance selection over them [15]. The stratification reduces the original data set size, splitting it into strata
where the selection will be applied. We analyze the selected training sets quality by means of the models (decision
trees) extracted from them by means of C4.5, from the precision and interpretability perspectives. To compare
the results we provide a statistical analysis using some statistical tests (ANOVA, Levene and Tamhane [16]).

The outline of the document is the following. In Section 2, we analyze the predictive models and their
extraction using C4.5, presenting the measures considered to assess their behaviour. Section 3 describes the
training set selection process and the drawbacks that the evaluation of very large data sets introduced in
the instance selection algorithms. Section 4 presents the evolutionary stratified instance selection process
applied to training set selection. Section 5 contains the experimental study developed, offering the methodol-
ogy followed, the results and their analysis. Finally, in Section 6 we will point out some concluding results.

2. Predictive models: classification trees extraction with C4.5

The importance of decision trees and rules is that they are favoured techniques to build understandable
models, a key point for the helpfulness of them and their application. A decision tree is a predictive model
that can be viewed as a tree.

In this study we are going to extract the decision trees using the C4.5 algorithm [4]. The models generated
are complete and consistent, covering all the examples of the training set. The induction algorithm may over fit
outliers, mislabelled, noisy data resulting in the inference of more structures than is justified by the training set.
This situation is increased when the size of the learning set is large, so decision trees size is increased consid-
erably [17-19]. The high size of the decision tree produces:

e Over fitting. In this case, the learned hypothesis is so closely related to the training examples that its gen-
eralization capabilities would be penalized [20].

e Low human interpretability. The highest size of the decision tree introduces the disadvantage of excessive
complexity that can render it incomprehensible to experts [3,21].

To avoid this situation, there are several ways to simplify the decision tree, which were classified by Breslow
and Aha in [22].

Among them, prune methods are more popular than the rest to be applied to the decision trees generated
[23]. Prune methods can be classified in:

e Preprune methods. The prune process is developed during the tree generation. The prune determines the
stopping condition for the branch specialization.

e Postprune methods. In this case, the prune process is applied after the tree construction. The prune removes
nodes from bottom to top until a determined limit is reached.
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Prune methods increase the generalization capabilities of the model and reduce its size, which increases its
interpretability.

The drawback for both prune methods, preprune and postprune, is to determine the stop limit. The limit
will depend on the training set where the decision tree is being extracted. The proper adjust of the limit pro-
duces models with better or worse behaviour. If the prune is minimal, the over fitting will be maintained. If the
prune is maximal, the precision capability could be reduced due to excessive generalization.

In the case of C4.5 algorithm, the Error-Based Pruning is applied [4]. This prune strategy has shown its
balance among precision and size in decision trees generated among other sort of pruning, like Reduced Error
Pruning, Pessimistic Error Pruning, Minimum Error Pruning, Critical Value Pruning, Cost-Complexity Prun-
ing, etc. [23].

As alternative strategy to simplify the decision trees, it can be developed the reduction of the initial size of
the learning set. This reduction consists of removing irrelevant instances before the induction process, often
resulting in smaller trees [19,24]. This process is carried out by means of instance selection algorithms [6,7]
where, instead of removing the irrelevant instances, the most representative ones are selected.

When the decision tree is going to be applied in domains where its character predictive and descriptive is
important, the simplicity of the decision tree is a key factor [2]. The measures we are going to use to assess the
predictive models extracted with C4.5 will be the following [3]:

o Test accuracy. In predictive models learning, it is a key factor to maximize the accuracy of the set of rules
obtained. This is going to be a quality measure of the model. The model will be generated by means of the
(4.5 algorithm using the training set selected. The test accuracy is calculated using the model constructed.

TEST = Test Accuracy. (1)

¢ Decision tree size. The measure of the size of decision tree is assessed considering the number of rules (7z)
which compose the model.

SIZE = ng. (2)
e Number of antecedents. As second measure of decision tree size we introduce the mean number of anteced-

ents per rule. Considering the rule R; as Cond — Class, N 4,...(R;) is the number of antecedents of the rule R;
and ANT the mean number of antecedents in the model (see (3) and (4)):

NAm‘ec(Ri) = ﬁ‘COI’ldl, (3)
1 &

ANT = — N ntec Ri . 4
g 2 N R0 @)

As the number of rules as the mean number of antecedents will be used to analyze the interpretability
capacities of the model.

3. Training set selection in large size data sets

In this section the training set selection process is described. It is developed by means of instance selection
algorithms, which select the most representative instances in the initial data set. When these algorithms are
assessed in large size data sets, they suffer the scaling problem.

In the Section 3.1 the training set selection is presented. The Section 3.2 is dedicated to expose the scaling
problem.

3.1. Training set selection

There may be situations in which there are too much data and these data in most cases are not equally use-
ful in the training phase of the learning algorithm [25]. Instance selection mechanisms have been proposed to
choose the most suitable points in the data set to become instances for the training data set used by the learn-
ing algorithm.
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Fig. 1. Instance selection for training set selection.

In training set selection, the objective is to find training sets which can produce, when they are used as
input, high precise and interpretable models.

The process, as we can see in Fig. 1 is the following: the initial data set (D) is divided in TR and TS. Using
TR as input (learning set), the instance selection algorithms obtains the training set selected (7'SS). The subset
TSS is used as input in the C4.5 algorithm to generate its decision tree associated. This model will be validated
using the test set 7'S.

In the following, we shortly revise the training sets selection approaches that we can find in the specialized
literature. We classify them according to the model extracted after the training set selection process.

e Decision trees. In this group we can point:

— In [24], Oates and Jensen study the effect of the training set size in decision trees complexity. The paper
analyzes five decision tree pruning algorithms and the Robust C4.5 algorithm as data reduction method.
Authors reach as conclusions the relationship between tree size and training set size, where increasing
training set size often results in a linear increase in tree size, even when that additional complexity does
not improve the classification accuracy.

— Sebban et al. in [S]apply training set selection to analyze the performances of the decision trees extracted
from them. In this paper the interest is focused on the complexity and the generalization accuracy of the
decision trees. Sebban et al. offer theoretical arguments to justify the data reduction techniques in favour
of tree simplification, where some data reduction algorithms are very efficient to improve standard post-
pruning performances.

e Neural networks. Training set selection has been used in the domain of neural networks:

— In [25], a genetic algorithm is used for training data selection in radial based function networks. The
approach is inspired in data editing concepts and outlier detection. Reeves and Bush apply a genetic
algorithm to identify a ‘good’ training set for fitting radial basis function networks. They conclude that
improved generalization can be obtained using this approach.

— Valls et al. in [26] select training data to improve the generalization capabilities in radial basis neural
networks. They propose a selective learning method in the domain of time-series prediction for a
non-dimensional problem. In their approach, they consider that the amount of selected patterns or
the neighbourhood choice around the new sample might influence in the generalization accuracy, and
the neighbourhood must be established according to the dimensionality of the patterns.

¢ Different models. The training set selection is applied to extract quality subsets used as input to generate
different sort of models:

— Sierra et al. apply estimation of distribution algorithms, selecting instances and features for training set
selection [27]. The subsets are evaluated by means of k-nearest neighbours, artificial neural networks and
classification trees. The training set selection in this paper is applied to a medical problem. When the
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resulting models are presented to the medical staff they noted that the confidence and acceptance of those
models had increased.

— Cano et al. analyze evolutionary training set selection, comparing it with other non-evolutionary
instance selection algorithms in [14]. The subsets extracted are evaluated as 1 nearest neighbour classi-
fiers and by means of C4.5 to generate decision trees. They combined the reduction rate and the 1 nearest
neighbour precision of the subset selected in the fitness function to address the training set selection pro-
cess. The conclusions reached indicate that evolutionary instance selection improves to non-evolutionary
instance selection algorithms in the training set selection domain.

— Aguilar et al. in [28], and Riquelme et al. improving it in [29], apply training set selection based on
ordered projection, analyzing the subsets using a k-nearest neighbour classifier and the C4.5 algorithm.
The study confirms that training set selection improves the efficiency of the models extractors and clas-
sifiers, and the accuracy and interpretability of the models and classifiers.

— In[30,31], Grochowski and Jankowski study different instance selection algorithms from the training set
selection perspective. The first paper [30] presents a set of instance selection algorithms, which are eval-
uated as training set selectors in the second one [31]. The performance of the selected subsets is tested
using k-nearest neighbours, support vector machine, SSV decision tree, a normalized version of RBF
network called NRBF, FSM and IncNet model.

— Pedreira in [32] proposes a methodology to update Learning Vector Quantization prototypes by using a
select subset of the available training data. The method selects, at each epoch, a subset of points consid-
ered to be at risk of being captured by another class prototype. The prototypes are updated only by the
points that are under threat of being captured by a wrong prototype. A direct consequence of this pro-
cedure is that each prototype ends up located where it is really needed in order to defend its group fea-
ture vectors against the prototypes representing other groups. The results show some improvements if
compared to the traditional LV'Q update scheme.

3.2. The scaling problem

In this section we study the effect of the data set size in the instance selection algorithms and in the decision
trees generated.

The majority of instance selection algorithms cannot deal with large size data sets. They have to face the
following difficulties:

e Efficiency. The efficiency of non-evolutionary instance selection algorithms evaluated is at least of O(1?),
being n the number of instances in the data set. There are another set of algorithms (like Run in [33],
Snn in [34], Shrink in [35], etc.) but most of them present an efficiency order much greater than O(n?). Log-
ically, when the size grows, the time needed by each algorithm also increases.

e Resources. Most of the assessed algorithms need to have the complete data set stored in memory to
carry out their execution. If the size of the data set was too big, the computer would need to use the disk
as swap memory. This loss of resources has an adverse effect on efficiency due to the increased access to the
disk.

e Generalization. Algorithms are affected in their generalization capabilities due to the noise and over fitting
effect introduced by larger size data sets.

e Representation. EAs are also affected by representation, due to the size of their chromosomes. When the
size of these chromosomes is so large, the algorithms experience converges difficulties, as well as costly com-
putational time.

These drawbacks introduce considerable degradation in the behaviour of the instance selection algorithms.
There is a group of them that cannot be evaluated due to its efficiency order (the case of Snn in [34] with
o(n’)).

On the other hand, algorithms evaluated directly on the whole larger data sets can be ineffective and/or
inefficient.
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4. Evolutionary stratified instance selection approach

The algorithm for the extraction of quality predictive models (high interpretable and precise) consists of the
combination of the EA algorithm with the stratification of the initial data set to face the scaling problem. Fol-
lowing this way, the method could be applied to data sets independently of their size. The stratification reduces
the search space, while the EA4 explores each strata.

The EA applied combines in its fitness function the accuracy offered by the 1-Nearest Neighbour classifier
and the percentage of instances reduced. This situation makes us to consider the following:

e The use of this classifier to assess the classification percentage of the chromosomes introduces the scaling up
problem in its evaluation, and the necessity of the stratification.

e The selection is developed by means of one classifier (1-Nearest Neighbour) which is not the one that is used
to evaluate the classification performances of the final solution (C4.5).

As alternative, we introduce a new fitness function, where the classification performance of the chromo-
somes is assessed by means of C4.5, which is more efficient than 1-Nearest Neighbour so the stratification is
needed just in very large size data sets. Using this fitness function, the selection is guided by the later classi-
fication algorithm (C4.5).

The Section 4.1 describes the use of EAs in training set selection, offering the solutions representation and
both fitness functions considered. In Section 4.2, the evolutionary stratified instance selection applied in train-
ing set selection is presented.

4.1. Evolutionary algorithms applied in training set selection

The application of EAs to training set selection is accomplished by tackling two important issues: the spec-
ification of the representation of the solutions and the definition of the fitness functions.

4.1.1. Representation

Let’s assume a data set denoted TR with n instances. The search space associated with the instance selection
is constituted by all the subsets of TR. Then, the chromosomes should represent subsets of TR. This is accom-
plished by using a binary representation. A chromosome consists of n genes (one for each instance in 7R) with
two possible states: 0 and 1. If the gene is 1, then its associated instance is included in the subset of TR rep-
resented by the chromosome. If it is 0, then this does not occur (see Fig. 2).

4.1.2. Fitness function R-P

Let TSS be a subset (see Fig. 2) of instances of TR to evaluate and be coded by a chromosome. We define
the fitness function that combines two values: the classification performance (clasper; with 1-Nearest Neigh-
bour classifier) associated with 7SS and the percentage of reduction (percred)) of instances of 7SS with
regards to TR (this fitness function is denoted by R-P: Reduction-Precision):

Fitness|(TSS) = o.- clasper, + (1 — a) - percred,. (5)

The 1-Nearest Neighbour classifier is used for measuring the classification rate, clasper, associated with T'SS.
It denotes the percentage of correctly classified objects from TR using only 7SS to find the nearest neighbour.

Fig. 2. Solutions representation.
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For each object y in TR, the nearest neighbour is searched for amongst those in the set 7.SS\{y}. Whereas,
percred; is defined as

percred, = 100 - (|TR| — |TSS|)/|TR)|. (6)

The objective of the EAs is to maximize the fitness function defined, i.e., maximize the classification perfor-
mance and minimize the number of instances obtained. In the experiments presented in this contribution,
we have considered the value « = 0.5 in the fitness function due to it presents the best trade off between reduc-
tion and accuracy in the final subsets selected.

4.1.3. Fitness function I-P

Let T'SS be a subset (see Fig. 2) of instances of TR to evaluate and be coded by a chromosome. The fitness
function combines two values: the classification performance (clasper, with models extracted by C4.5) associ-
ated with T'SS and the percentage of reduction (percred,) of decision tree size using as input 7SS with regards
to TR (this fitness function is denoted by I-P: Interpretability-Precision):

Fitness,(TSS) = o - clasper, + (1 — a) - percred,. (7)

The models extracted by C4.5 are used for measuring the classification rate, clasper,, associated with 7.SS. It
denotes the percentage of correctly classified objects from 7R by means of the decision tree generated using
TSS as input. Whereas, percred, is defined as

100 - (SIZE g — SIZE1s5) @)
SIZE r ’
The objective of the EAs is to maximize the fitness function defined, i.e., maximize the classification performance

and minimize the size of the decision tree obtained. As in other fitness function, we have considered the value
o = 0.5 due to it presents the best trade off between decision tree size and accuracy in the final subsets selected.

percred, =

4.2. Evolutionary stratified instance selection for training set selection

The stratified strategy has shown in previous works its behaviour facing the scaling problem [15]. It divides
the initial data set in disjoint strata with equal class distribution. Due to the prototypes are independent one of
each other, we can group them in these strata without loss of information.

Data Set (D)

iy --- T,

Training Set (W Test Set (TS,) ‘

Stratified Training Subset Selected (STSS;)

]

Data Mining
Algorithm (C4.5)

Model
Obtained

ISA: Instance Selection Algorithm

Fig. 3. Evolutionary stratified instance selection for training set selection.
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The number of strata will determine the size of them. Using the proper number of strata we can reduce
significantly the data set. This situation allows us to avoid the drawbacks suggested in Section 3.2.

Following the stratified strategy, initial data set D is divided into ¢ disjoint sets D;, strata of equal size, Dy,
D,,...,and D,.

The test set 7'S will be the TR complementary one in D. The subsets TR and T'S will be obtained as (9) and
(10) show:

R=|JD;, Jc{1,2,....1}, )
jeJ
TS = D\ TR. (10)

Instance selection algorithms (evolutionary and non-evolutionary) are applied in each D; obtaining a subset
selected DS;. The instance selected set (7'SS) in stratified strategy is obtained using the DS; (see Eq. (11))
and it is called Stratified Training Subset Selected (STSS).

STSS = | JDS;, JC{1,2,....1}. (11)

jeJ

The complete process is presented in Fig. 3.
5. Experimental study

In this section we describe the experimental study developed. Section 5.1 shows the methodology followed
in the experiments, Section 5.2 shows the results, finally, in the Section 5.3 we analyze them from different
points of view (reduction, test accuracy, size of the model and balance precision-interpretability), using some
statistical tests (ANOVA, Levene, Tamhane) for analyzing the algorithms accuracy.

5.1. Experimental methodology

In this subsection we present: the data sets, the algorithms assessed and their parameters, the stratification
model.

5.1.1. Data sets

We have carried out the experiments with increasing complexity and size of data sets. We have selected
medium, large and huge size data sets as we can see in Tables 1-3 (these data sets can be found in the UCI
Repository in [36], where the Kdd Cup’99 data set is particularly its 10% version).

Table 1

Medium size data sets

Data set Instances Features Classes
Pen-based recognition 10,992 16 10
SatImage 6435 36 6
Thyroid 7200 21 3
Table 2

Large size data set

Data set Instances Features Classes

Adult 30,132 14 2
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Table 3

Very large size data set

Data set Instances Features Classes
Kdd Cup’99 494,022 41 23

5.1.2. Algorithms and parameters

The algorithms evaluated in this study will be divided in two groups, considering their evolutionary

nature:

Non-evolutionary algorithms. The algorithms selected will be: Cnn [37], 1b2 [38], I3 [38], which have been
selected due to they are the most efficient non-evolutionary algorithms in [14], and John’s Robust C4.5 [39],
PSRCG [40] and Random which have shown the best behaviour in [5] to obtain quality training sets to
extract the decision trees.
The description of the algorithms is the following:
Cnn [37]: It tries to find a consistent subset, which correctly classifies all of the remaining points in the
sample set. However, this algorithm will not find a minimal consistent subset.
— Ib2 [38]: It is similar to Cnn but using a different selection strategy.
— Ib3 [38]: It outperforms /b2 introducing the acceptable instance concept to carry out the selection.
— Robust C4.5 [39]: This algorithm removes interactively all instances misclassified by the current decision
tree and builds a new one. It employs the C4.5 algorithm to generate the decision trees.
— PSRCG [40]: The algorithm considers a statistical information criterion based on a quadratic entropy
computed from the nearest neighbour topology to carry out the remove of the instances.
— Random: It selects randomly a training set fixing the reduction percentage it has to apply. This one has
been added to compare the algorithms selection versus the random one.
The parameters of /b3 are: Acceptance Level = 0.9 and Drop Level = 0.7. The other algorithms do not
have parameters to be fixed.
Evolutionary algorithms: We have selected the CHC [13] algorithm as efficient and effective model, due to
its behaviour showed on [14]. The description of the algorithm is the following:
During each generation the CHC algorithm uses a parent population of size N to generate an intermediate
population of N individuals, which are randomly paired and used to generate N potential offspring. Then, a
survival competition is held where the best N chromosomes from the parent and offspring populations are
selected to form the next generation.
CHC also implements a form of heterogeneous recombination using HUX, a special recombination oper-
ator. HUX exchanges half of the bits that differ between parents, where the bit position to be exchanged
are randomly determined. CHC also employs a method of incest prevention. Before applying HUX on two
parents, the Hamming distance between them is measured. Only those parents which differ from each
other by some number of bits (mating threshold) are mated. The initial threshold is set at L/4, where
L is the length of the chromosomes. When no offspring are inserted into the new population the threshold
is reduced by 1.
No mutation is applied during the recombination phase. Instead, when the population converges
or the search stops making progress (i.e., the difference threshold has dropped to zero and no new
offspring are being generated which are better than any members of the parent population), the
population is reinitialized to introduce new diversity to the search. The chromosome representing the
best solution found over the course of the search is used as a template to re-seed the population.
Re-seeding of the population is accomplished by randomly changing 35% of the bits in the template
chromosome to form each of the other N — 1 new chromosomes in the population. Search is then
resumed.
The size of the population is 50 and the number of evaluations 10,000.

As reference we have introduced the C4.5 algorithm using the initial data set without reduction,

and following the ten fold cross-validation classic process (we denoted it Tfcv c¢/). When the size of the
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Instance Selection
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Algorithm (C4.5)

Fig. 4. Evolutionary instance selection for training set selection in Tfcv cl.

data sets permits us, we assess the instance selection algorithms over the complete data set in Tfcv cl (see
Fig. 4).

We have included at the same time the execution of C4.5 applying the maximal (C4.5 Max), minimal (C4.5
Min) and default (C4.5) Error-Based Prune to analyze the interpretability of the models generated.

As baseline, we have added to the experimentation the execution of the Random algorithm considering the
minimal and the maximal reduction offered by the instance selection algorithms assessed.

5.1.3. Stratification and partitions

We have evaluated each algorithm in a ten fold cross-validation process. In the validation process TR,,
lij=1,...,10 is a 90% of D and TS; its complementary 10% of D.

The executions follow the model described in Fig. 3 called stratified Ten fold cross-validation (7fcv st).

In Tfcv st each TR; and TS, are defined as we can see in (12) and (13), by means of the union of D;
subsets.

TR =)D, J={j/1<j<b-(i—1) and (i-b)+1<j<1}, (12)
jeJ

where 7 is the number of strata, and b is the number of strata grouped (b = ¢/10, to carry out the ten fold cross-
validation).
The STSS, subset is generated using the DS; instead of D; (see (14)).

STSS; = | |DS;,, J={j/1<j<b-(i—1) and (i-b)+1<,j<1}. 14
J

jeJ

STSS; contains the instances selected by instance selection algorithms in TR; following the stratified
strategy.
For each data set we have employed the number of strata that appear in Table 4.
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Table 4

Data sets stratification

Pen-based recognition SatImage Thyroid Adult Kdd Cup’99
t=10 t=10 t=10 t=100 t=100
5.2. Results

In this section we describe and offer the tables where the results are shown.
The table presents the following structure:

e The first column shows the name of the algorithm. In this column the name is followed by the sort of
validation process st (Tfcv st) or ¢/ (Tfev cl).

e The second column offers the average reduction percentage from the initial set.

e The third column contains the test accuracy associated to the decision tree classifier generated using the
subset selected in stratification (S7SS).

e The fourth column presents the number of rules which composed the model.

e The fifth column shows the mean number of antecedents of the rules of the model.

e The sixth column offers the time per algorithm execution consumed.

Tables 5-7 contain the results obtained in the evaluation of Pen-Based Recognition, Satlmage and Thyroid

data sets, respectively. In Table 8 we present the results obtained in the evaluation of Adult data set. Table 9
contains the results associated to Kdd Cup’99 data set.

5.3. Analysis

The analysis of Tables 5-9 is developed according to the following key points: Reduction percentage, Test
Accuracy, Size of the model, balance Precision-Interpretability and Execution Time.

Table 5
Results associated to pen-based recognition data set
Red. Test Size Ant. Time

C4.5 Min cl 96.58 262.1 9.8 1
C4.5cl 96.46 185.2 9.5 1
C4.5 Max cl 96.20 158.4 8.6 1
Robust C4.5 ¢l 3.54 96.46 176.6 9.2 11
Robust C4.5 st 3.31 96.20 168.4 8.9 2
Cnn cl 95.43 84.2 59.3 7.0 16
Random; cl 95.43 85.1 38.8 6.1 1
Cnn st 89.45 90.62 98.7 8.1 1
1b2 cl 98.61 58.13 25.0 5.4 2
Random; cl 98.61 74.98 19.3 4.9 1
Ib2 st 94.31 79.30 48.5 6.2 1
1b3 cl 96.39 80.9 57.6 6.8 7
1b3 st 83.05 94.05 88.3 7.7 1
PSRCG st 94.95 75.97 42.1 6.3 63
CHC I-P cl 79.01 95.08 109.5 7.9 905
Random; cl 79.01 91.86 77.2 7.4 2
CHC R-P st 96.65 80.16 29.2 53 263

Random, cl 96.65 83.34 31.0 5.7 1
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Table 6
Results associated to Satlmage data set

Red. Test Size Ant. Time
C4.5 Min cl 86.27 4442 124 1
C4.5cl 86.71 280.4 10.8 1
C4.5 Max cl 87.59 144.3 9.0 1
Robust C4.5 cl 6.79 87.23 183.6 10.5 24
Robust C4.5 st 6.39 87.02 198.5 10.6 2
Cnn cl 80.26 78.36 183.7 12.5 30
Random; cl 80.26 82.98 83.0 8.3 1
Cnn st 75.12 80.44 208.6 11.7 1
Ib2 cl 96.50 52.18 322 7.8 3
Random, cl 96.50 77.04 19.8 5.3 1
Ib2 st 91.87 6291 68.1 10.2 1
Ib3 cl 84.70 76.70 139.2 10.9 11
Ib3 st 78.11 86.49 186.7 10.7 1
PSRCG st 79.69 79.24 142.9 10.1 30
CHC I-P cl 51.2 84.98 115.3 9.3 25,240
Random; cl 51.2 84.1 135.5 8.9 2
CHC R-P st 94.32 78.83 15.5 44 128
Random, cl 94.32 79.03 30.0 6.3 1
Table 7
Results associated to Thyroid data set

Red. Test Size Ant. Time
C4.5 Min cl 99.01 38.4 7.6 1
C4.5cl 99.03 25.1 6.2 1
C4.5 Max cl 99.06 10.8 4.2 1
Robust C4.5 cl 0.43 99.04 21.9 5.2 5
Robust C4.5 st 0.34 99.05 20.1 6.3 1
Cnn cl 81.25 97.32 13.1 4.7 31
Random; cl 81.25 98.63 10.6 4.7 1
Cnn st 78.93 98.78 14.0 49 1
Ib2 cl 99.22 93.71 32 1.6 1
Random; cl 99.22 94.19 2.0 1.5 1
Ib2 st 92.92 98.61 9.3 3.8 1
Ib3 cl 33.65 98.83 17.7 5.8 40
1b3 st 38.62 99.01 22.2 7.0 1
PSRCG st 86.12 98.93 5.4 29 20
CHC I-P cl 50.44 99.16 7.9 34 7543
Random; cl 50.44 98.89 19.0 6.1 1
CHC R-P st 99.44 93.77 22 1.0 156
Randomy cl 99.44 92.26 2.6 1.1 1

5.3.1. Reduction percentage

Taking the second column of the tables into account, we can offer the following comments:

e The Robust C4.5 is the algorithm which offers the smallest reduction over the initial data set. It cleans some

noisy instances to improve the precision of the models extracted with C4.5.

e Among the non-evolutive instance selection algorithms, the one with the best behaviour in reduction is the
Ib2 in large and medium size data sets, followed by the PSRGC algorithm. In very large data sets as Kdd

Cup’99, the best reduction is offered by PSRGC.

e In the EAs we can detect two different behaviours: CHC I-P is focused to the size of decision tree and its
precision, so it is not interested in the number of instances and its reduction. For this reason, the reduction
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Table 8
Results associated to Adult data set

Red. Test Size Ant. Time
C4.5 Min cl 84.02 1252.3 17.3 12
C4.5cl 854 359.8 14.3 11
C4.5 Max cl 85.86 52.0 11.1 10
Robust C4.5 cl 12.16 85.69 297.1 11.9 37
Robust C4.5 st 11.52 86.15 193.3 12.8 1
Cnn cl 64.4 85.5 107.7 13.1 1
Random; cl 64.4 84.8 191.9 13.0 1
Cnn st 84.27 85.75 292.5 15.5 1
1b2 cl 99.94 26.56 2.2 1.3 1
Random, cl 99.94 72.71 38.6 1.7 1
1b2 st 99.57 36.4 12.1 5.0 1
1b3 cl 79.42 83.76 145.9 12.2 3
1b3 st 76.69 82.70 179.0 12.8 1
PSRCG st 96.84 75.77 47.8 8.1 4
CHC I-P st 58.54 85.24 203.5 13.5 108
Random; cl 58.54 85.09 216.3 14.5 1
CHC R-P st 99.38 82.7 5.9 2.8 38
Randomy cl 99.38 79.89 13.9 5.5 1
Table 9
Results associate to Kdd Cup’99 data set

Red. Test Size Ant. Time
C4.5 Min cl 99.96 281.5 15.0 248
C4.5¢cl 99.95 143.8 11.7 375
C4.5 Max cl 99.99 106.1 10.4 380
Robust C4.5 st 0.28 99.72 71.1 9.8 6
Cnn st 63.85 99.5 105.5 12.1 33
Random; cl 63.85 99.9 89.4 10.6 1
1b2 st 82.01 95.05 58.2 10.8 21
Random, cl 82.01 99.9 61.9 9.3 1
Ib3 st 78.82 96.77 74.3 11.4 2
PSRCG st 99.88 98.6 37.0 7.6 5634
CHC I-P st 60.32 99.7 69.3 10.0 1306
Random; cl 60.32 99.9 94.7 10.8 1
CHC R-P st 99.28 98.41 9.5 3.5 4912
Randomy cl 99.28 99.44 18.8 6.1 1

rate of CHC I-P is average. On the other hand, CHC R-P combines the reduction rate as objective in the
fitness function, so it presents high reduction rates. The CHC R-P shows high reduction rates in the data sets
analyzed, independently of the size of them. It presents reduction rates greater than 94% in all cases.

5.3.2. Test accuracy

To compare the results provided by C4.5 over the different training set selection algorithm outputs we
develop a statistical analysis. First, we use the ANOVA analysis of one factor [16] for each problem to be used
for that purpose; the factor being the algorithms used. Given that significant differences were found for all
algorithms with respect to the mean result values associated with the different algorithms analyzed, we per-
formed a Tamhane means rank test [16] with a confidence coefficient of 95%, as the hypothesis of equality
of variances of the results was rejected in all of the analyzes performed for each method (Levene test). The
tests were performed using SPSS [41] statistical package (see from Tables A.1-A.3 in Appendix A).
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Table 10

Resume of Tamhane test having CHC I-P as reference focused on precision

Algorithm Better or equal in precision
C4.5 Min cl 3/5
C4.5¢cl 3/5
C4.5 Max cl 3/5
Robust C4.5 cl 3/4
Robust C4.5 st 2/5
Cnn cl 4/4
Random, cl 4/5
Cnn st 4/5
Ib2 cl 4/4
Random, cl 4/5
Ib2 st 5/5
1b3 cl 4/4
Ib3 st 4/5
PSRCG st 5/5
Random; cl 4/5
CHC R-P st 5/5
Randomy cl 5/5

Table 10 resumes the tables offered in Appendix A where the Tamhane test for each problem, having CHC

I-P as reference, is applied. The first column is the name of the algorithm which is being compared to CHC I-

P.

The second one represents the number of data sets where the algorithm CHC I-P presents a better or equal

behaviour than the algorithm which is in the first column.

Considering the third column in Tables 5-10, we can point out that:

The CHC I-P presents one of the highest test precision rates among the instance selection algorithms stud-
ied, near to the C4.5 ones. According to the statistical analysis, we can point out that the CHC I-P precision
is better or equal than the offered by most of instance selection algorithms. We have an exception with
Robust C4.5 that produces small data reduction.

In the EAs case, the CHC I-P offers better precision rates than CHC R-P due to the first one has associated
smaller reduction rates to generate the models.

5.3.3. Size of the model

The size of the model can be studied considering the fourth and fifth columns of the results tables (Tables 5-9),

corresponding to the mean number of rules and the mean number of antecedents per rule. We can point out
the following:

Usually, the size of the predictive models is related to the size of the input training data set used to generate
them. The instance selection algorithms which present the best reduction rates are often the ones that pres-
ent the smaller predictive models. We have an exception with the PSRCG algorithm, which presents high
reduction rates with medium size models.

The biggest decision trees correspond to the C4.5 executions, with maximal, minimal or default prune, and
Robust C4.5.

Among the non-evolutionary instance selection algorithms, the best one is /62, which has associated high
reduction rate, but it presents very bad test accuracy.

Focusing our attention on the EAs, CHC R-P offers the minimal decision trees due to its maximal reduction
percentage. The average reduction rate in CHC I-P produces that its model associated is bigger than the
one generated by CHC R-P.The CHC R-P generates one of the minimal decision trees when the size of data
set grows. In the fourth and fifth columns of Table 9, dedicated to the biggest data set (Kdd Cup’99), we can
see that C4.5 with maximal prune obtains models with 106.1 rules and 10.4 antecedents while stratified
CHC R-P reduces the size to 9.5 rules and 3.5 antecedents per rule.
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Table 11
Resume of Tamhane test having CHC I-P as reference, considering precision and size
Algorithm Better or equal Better or equal in size
in precision of the model (smaller size)
C4.5 Min cl 3/5 5/5
C4.5cl 3/5 5/5
C4.5 Max cl 3/5 4/5
Robust C4.5 cl 3/4 4/4
Robust C4.5 st 2/5 4/5
Cnn cl 4/4 2/4
Random, cl 4/5 2/5
Cnn st 4/5 4/5
1b2 cl 4/4 0/4
Random, cl 4/5 0/5
Ib2 st 5/5 1/5
1b3 cl 4/4 2/4
Ib3 st 4/5 3/5
PSRCG st 5/5 1/5
Random; cl 4/5 4/5
CHC R-P st 5/5 0/5
Randomy cl 5/5 0/5

e Comparing the decision trees extracted from the Random selection, we can point out that CHC
R-P improves considerably the results of the Random selection, with smaller models in all the data sets
assessed.

Due to the size of the model affects directly to the interpretability of the model, we can consider that CHC
R-P offers the most interpretable decision trees.

5.3.4. Balance precision-interpretability

In this study the objective considered is the analysis of the extraction of highly precise-interpretable predic-
tion models by means of instance selection algorithms. Having the precision and the interpretability (size of
the models) key points in mind we add Table 11. This table presents the behaviour relationship in accuracy test
and interpretability between CHC I-P and the rest of algorithms.

The conclusions reached analyzing Tables 5-9 and 11 are the following:

e The models generated without reduction by means of C4.5 have the highest accuracy rates, but their deci-
sion trees are the biggest ones, so their interpretability is reduced.

e The models associated to the Random selection present high accuracy rates, but their models are bigger than
the ones extracted from the CHC R-P selection.

e The best behaviour in interpretability belongs to 72, due to its high reduction rate, but the precision it has
associated is very poor.

e The CHC R-P and CHC I-P present a high trade off between precision and interpretability. The CHC R-P
produces smaller models than CHC I-P, but the last one offers higher accuracy rate, near to the associated
to C4.5 without reduction.

5.3.5. Execution time
Paying attention to the execution time of the algorithms we can offer the following comments (Tables 5-9):

e Asthe size of data set grows, the C4.5 execution time grows too. The proper reduction of the data set improves
the execution time of C4.5. To increase the prune rate of C4.5 affects to the execution time negatively.

e The non-evolutionary algorithms present smaller computational cost than CHC due to the evolutionary
process that CHC has associated.

e Between both CHC versions, the execution of CHC R-P is the fastest one.
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The execution time associated to CHC represents a greater cost than the offered by the non-evolutionary
algorithms, however its application is interesting because it produces a high trade off between test accuracy
and small size of the decision trees generated.

6. Concluding remarks

In this contribution we have analyzed the extraction of classification rule-based models by means of evo-
lutionary stratified training set selection. The quality of the models has been evaluated considering their accu-
racy and interpretability.

The main conclusions reached are the following:

e The evolutionary stratified instance selection (CHC R-P) offers the best model size, maintaining an accept-
able accuracy. It produces the smallest set of rules, with the minimal number of rules and the smallest num-
ber of antecedents per rule.

e The stratified CHC I-P allows us to obtain models with high test accuracy rates, similar to C4.5, but with
the advantage of the size of the models that are reduced considerably.

Finally, we can conclude that the predictive model extraction by means of evolutionary stratified
training set selection (CHC R-P or I-P) presents a good trade off between accuracy and interpretability.
Our proposals present a very good scaling up behaviour, obtaining good results when the size of data set
grows.
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Appendix A

See Tables A.1-A.3.

Table A.1
Averaged values, standard deviations, mean differences and critical values of the Tamhane test of the results of Pen-Based and SatImage
data sets for CHC I-P

Algorithm Pen based SatImage
Mean SD Mean diff. p-Value Mean SD Mean diff. p-Value

C4.5 Min cl 96.581 0.20648 1.5010(*) 0 86.27 0.16773 —1.2893(%) 0
C4.5cl 96.46 0.16138 1.3800(%) 0 86.71 0.12463 —1.7293(%) 0
C4.5 Max cl 96.2 0.19385 1.1200(*) 0 87.59 0.11343 —2.6093(™) 0
Robust C4.5 cl 96.462 0.3255 1.3820(%) 0 87.231 0.38304 —2.2503(%) 0
Robust C4.5 st 96.2 0.54371 1.1200(*) 0.006 87.02 0.41085 —2.0393(%) 0
Cnn cl 84.201 0.74912 10.8790(%) 0 78.359 0.58463 6.6217(7) 0
Random, cl 85.141 1.01902 9.9390(*) 0 82.98 1.34582 2.0007(") 0
Cnn st 90.619 0.58911 4.4610(%) 0 80.44 0.87932 4.5407(%) 0
Ib2 cl 58.13 1.48531 36.9500(%) 0 52.181 0.99849 32.7997(%) 0
Random, cl 74.9797 1.2403 20.1003(*) 0 77.0387 1.50062 7.9420(%) 0
Ib2 st 79.299 0.8464 15.7810(%) 0 62.908 1.38984 22.0727(%) 0
1b3 cl 80.9 0.51584 14.1800(%) 0 76.7 0.78771 8.2807(") 0
Ib3 st 94.049 0.42459 1.0310(%) 0.001 86.49 0.68532 —1.5093(%) 0.005
PSRCG st 75.969 0.59207 19.1110(%) 0 79.239 0.48303 5.7417(%) 0
Randomj cl 91.861 1.14942 3.2190(%) 0 84.1007 1.02602 0.8800(™) 0.017
CHC R-P st 80.159 1.30844 14.9210(%) 0 78.83 0.34143 6.1507(%) 0
Randomy cl 83.3403 1.28502 11.7397(%) 0 79 1.20198 5.9807(%) 0

* In Tamhane test, if p < 0.05, then the mean difference associated presents a significative value.
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Table A.2
Averaged values, standard deviations, mean differences and critical values of the Tamhane test of the results of Thyroid and Adult data
sets for CHC I-P

Algorithm Thyroid Adult
Mean SD Mean diff. p-Value Mean SD Mean diff. p-Value

C4.5 Min cl 99.01 0.01491 0.149 0.502 84.021 0.19902 1.2180(™) 0
C4.5 cl 99.03 0.01414 0.129 0.854 85.401 0.16135 —0.162 1
C4.5 Max cl 99.061 0.00876 0.098 1 85.859 0.08306 —0.6200(™) 0.001
Robust C4.5 cl 99.04 0.02667 0.119 0.963 85.69 0.32338 —0.451 0.334
Robust C4.5 st 99.05 0.03801 0.109 0.996 86.151 0.23082 —0.9120(™) 0
Cnn cl 97.319 0.31409 1.8400(™) 0 85.499 0.3276 -0.26 1
Random, cl 98.629 0.17103 0.5300(™) 0 84.8007 0.1692 0.4383(") 0.028
Cnn st 98.781 0.18953 0.3780(") 0.01 85.751 0.20179 —0.5120(%) 0.012
1b2 cl 93.71 1.40509 5.4490(") 0 26.56 0.46205 58.6790(") 0
Random; cl 94.1893 1.51943 4.9697(%) 0 72.7103 1.62002 12.5287(%) 0

Ib2 st 98.61 0.25586 0.5490(™) 0.004 36.402 2.58145 48.8370(") 0

Ib3 cl 98.829 0.28661 0.33 0.604 83.76 0.65501 1.4790(™) 0.004
Ib3 st 99.009 0.07894 0.15 0.744 82.701 0.58966 2.5380(™) 0
PSRCG st 98.931 0.18114 0.228 0.59 75.77 0.93051 9.4690(™) 0
Random; cl 98.89 0.22215 0.2690(™) 0.012 85.09 0.25365 0.149 1
CHC R-P st 93.77 0.33407 5.3890(") 0 82.7 0.37818 2.5390(™) 0
Randomy cl 92.2597 1.04137 6.8993(") 0 79.8903 0.7984 5.3487(") 0

* In Tamhane test, if p <0.05, then the mean difference associated presents a significative value.

Table A.3
Averaged values, standard deviations, mean differences and critical values of the Tamhane test of the results of Kdd Cup’99 data set for
CHC I-P

Algorithm Kdd Cup’99
Mean SD Mean diff. p-Value

C4.5 Min cl 99.962 0.01229 —0.2610(%) 0
C4.5¢cl 99.95 0.01247 —0.2490(%) 0
C4.5 Max cl 99.99 0 —0.2890(*) 0
Robust C4.5 st 99.72 0.05578 —-0.019 1
Cnn st 99.5 0.06912 0.2010(%) 0.001
Random, cl 99.899 0.02734 —0.1980(*) 0
1b2 st 95.049 0.14761 4.6520(") 0
Random, cl 99.8993 0.0297 —0.1983(%) 0
1b3 st 96.769 0.27674 2.9320(%) 0
PSRCG st 98.6 0.28802 1.1010(%) 0
Random; cl 99.8997 0.02371 —0.1987(%) 0
CHC R-P st 98.41 0.18547 1.2910(%) 0
Random, cl 99.4403 0.16816 0.2607(*) 0

" In Tamhane test, if p <0.05, then the mean difference associated presents a significative value.
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